Bilbao Crystallographic Server NEUTRON | Help |
Space group G62 , number 62 Lattice type : oP Number of generators : 4 1 2 3 4 1 0 0 0 -1 0 0 1/2 -1 0 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 0 1 0 1/2 0 -1 0 0 0 0 1 0 0 0 1 1/2 0 0 -1 0 0 0 -1 0 Number of elements : 8 1 2 3 4 1 0 0 0 -1 0 0 1/2 -1 0 0 0 1 0 0 -1/2 0 1 0 0 0 -1 0 0 0 1 0 1/2 0 -1 0 1/2 0 0 1 0 0 0 1 1/2 0 0 -1 0 0 0 -1 -1/2 5 6 7 8 -1 0 0 0 1 0 0 -1/2 1 0 0 0 -1 0 0 1/2 0 -1 0 0 0 1 0 0 0 -1 0 -1/2 0 1 0 -1/2 0 0 -1 0 0 0 -1 -1/2 0 0 1 0 0 0 1 1/2 K-vector GM : in primitive basis : 0.000 0.000 0.000 in standart dual basis : 0.000 0.000 0.000 The little group of the k-vector has the following 8 elements as translation coset representatives : 1 2 3 4 1 0 0 0 -1 0 0 1/2 -1 0 0 0 1 0 0 -1/2 0 1 0 0 0 -1 0 0 0 1 0 1/2 0 -1 0 1/2 0 0 1 0 0 0 1 1/2 0 0 -1 0 0 0 -1 -1/2 5 6 7 8 -1 0 0 0 1 0 0 -1/2 1 0 0 0 -1 0 0 1/2 0 -1 0 0 0 1 0 0 0 -1 0 -1/2 0 1 0 -1/2 0 0 -1 0 0 0 -1 -1/2 0 0 1 0 0 0 1 1/2 The little group of the k-vector has 8 allowed irreps. The matrices, corresponding to all of the little group elements are : Irrep (GM)(1) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) 5 6 7 8 (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) Irrep (GM)(2) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) 5 6 7 8 (1.000,180.0) (1.000,180.0) (1.000,180.0) (1.000,180.0) Irrep (GM)(3) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000, 0.0) (1.000,180.0) (1.000,180.0) 5 6 7 8 (1.000, 0.0) (1.000, 0.0) (1.000,180.0) (1.000,180.0) Irrep (GM)(4) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000, 0.0) (1.000,180.0) (1.000,180.0) 5 6 7 8 (1.000,180.0) (1.000,180.0) (1.000, 0.0) (1.000, 0.0) Irrep (GM)(5) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000,180.0) (1.000, 0.0) (1.000,180.0) 5 6 7 8 (1.000, 0.0) (1.000,180.0) (1.000, 0.0) (1.000,180.0) Irrep (GM)(6) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000,180.0) (1.000, 0.0) (1.000,180.0) 5 6 7 8 (1.000,180.0) (1.000, 0.0) (1.000,180.0) (1.000, 0.0) Irrep (GM)(7) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000,180.0) (1.000,180.0) (1.000, 0.0) 5 6 7 8 (1.000, 0.0) (1.000,180.0) (1.000,180.0) (1.000, 0.0) Irrep (GM)(8) , dimension 1 1 2 3 4 (1.000, 0.0) (1.000,180.0) (1.000,180.0) (1.000, 0.0) 5 6 7 8 (1.000,180.0) (1.000, 0.0) (1.000, 0.0) (1.000,180.0) The Q-vector in general is Q = ( h, k, l ) There are 7 nontrivial allowed types of Q-vectors. -------------------------------------------------------------------------------- H[1] = ( 0, 0, l ) , Q[1] = ( 0, 0, l ) where parameters are : l=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 2 7 8 The sum over all GQ elements is : X_j(1) + X_j(2).exp[-i.2.Pi.(0.50*l)] + X_j(7) + X_j(8).exp[-i.2.Pi.(0.50*l)] Where j indexes the representations Condition l=any For l = 1 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (0.000, 0.0) NO GM_5 (4.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (4.000, 0.0) YES For l = 2 Rep. Sum Allowed GM_1 (4.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (4.000, 0.0) YES GM_5 (0.000, 0.0) NO GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (0.000, 0.0) NO -------------------------------------------------------------------------------- H[2] = ( 0, k, 0 ) , Q[2] = ( 0, k, 0 ) where parameters are : k=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 3 6 8 The sum over all GQ elements is : X_j(1) + X_j(3).exp[-i.2.Pi.(0.50*k)] + X_j(6) + X_j(8).exp[-i.2.Pi.(- 0.50*k)] Where j indexes the representations Condition k=any For k = 1 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (0.000, 0.0) NO GM_3 (4.000, 0.0) YES GM_4 (0.000, 0.0) NO GM_5 (0.000, 0.0) NO GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (4.000, 0.0) YES For k = 2 Rep. Sum Allowed GM_1 (4.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (0.000, 0.0) NO GM_5 (0.000, 0.0) NO GM_6 (4.000, 0.0) YES GM_7 (0.000, 0.0) NO GM_8 (0.000, 0.0) NO -------------------------------------------------------------------------------- H[3] = ( h, 0, 0 ) , Q[3] = ( h, 0, 0 ) where parameters are : h=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 4 6 7 The sum over all GQ elements is : X_j(1) + X_j(4).exp[-i.2.Pi.(- 0.50*h)] + X_j(6).exp[-i.2.Pi.(- 0.50*h)] + X_j(7) Where j indexes the representations Condition h=any For h = 1 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (4.000, 0.0) YES GM_5 (4.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (0.000, 0.0) NO For h = 2 Rep. Sum Allowed GM_1 (4.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (0.000, 0.0) NO GM_5 (0.000, 0.0) NO GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (4.000, 0.0) YES -------------------------------------------------------------------------------- H[4] = ( 0, 0, 0 ) , Q[4] = ( 0, 0, 0 ) The elements of the little group, which leaves Q invariant (GQ group) are : 1 2 3 4 5 6 7 8 The sum over all GQ elements is : X_j(1) + X_j(2) + X_j(3) + X_j(4) + X_j(5) + X_j(6) + X_j(7) + X_j(8) Where j indexes the representations Rep. Sum Allowed GM_1 (8.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (0.000, 0.0) NO GM_5 (0.000, 0.0) NO GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (0.000, 0.0) NO -------------------------------------------------------------------------------- H[5] = ( h, k, 0 ) , Q[5] = ( h, k, 0 ) where parameters are : h=any, k=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 6 The sum over all GQ elements is : X_j(1) + X_j(6).exp[-i.2.Pi.(- 0.50*h)] Where j indexes the representations Condition h=any, k=any For h = 1 , k = 1 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (2.000, 0.0) YES GM_3 (0.000, 0.0) NO GM_4 (2.000, 0.0) YES GM_5 (2.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (2.000, 0.0) YES GM_8 (0.000, 0.0) NO For h = 2 , k = 1 Rep. Sum Allowed GM_1 (2.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (2.000, 0.0) YES GM_4 (0.000, 0.0) NO GM_5 (0.000, 0.0) NO GM_6 (2.000, 0.0) YES GM_7 (0.000, 0.0) NO GM_8 (2.000, 0.0) YES -------------------------------------------------------------------------------- H[6] = ( h, 0, l ) , Q[6] = ( h, 0, l ) where parameters are : h=any, l=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 7 The sum over all GQ elements is : X_j(1) + X_j(7) Where j indexes the representations Rep. Sum Allowed GM_1 (2.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (2.000, 0.0) YES GM_5 (2.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (2.000, 0.0) YES -------------------------------------------------------------------------------- H[7] = ( 0, k, l ) , Q[7] = ( 0, k, l ) where parameters are : k=any, l=any The elements of the little group, which leaves Q invariant (GQ group) are : 1 8 The sum over all GQ elements is : X_j(1) + X_j(8).exp[-i.2.Pi.(- 0.50*k + 0.50*l)] Where j indexes the representations Condition k=any, l=any For k = 1 , l = 1 Rep. Sum Allowed GM_1 (2.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (2.000, 0.0) YES GM_5 (0.000, 0.0) NO GM_6 (2.000, 0.0) YES GM_7 (2.000, 0.0) YES GM_8 (0.000, 0.0) NO For k = 1 , l = 2 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (2.000, 0.0) YES GM_3 (2.000, 0.0) YES GM_4 (0.000, 0.0) NO GM_5 (2.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (2.000, 0.0) YES For k = 2 , l = 1 Rep. Sum Allowed GM_1 (0.000, 0.0) NO GM_2 (2.000, 0.0) YES GM_3 (2.000, 0.0) YES GM_4 (0.000, 0.0) NO GM_5 (2.000, 0.0) YES GM_6 (0.000, 0.0) NO GM_7 (0.000, 0.0) NO GM_8 (2.000, 0.0) YES For k = 2 , l = 2 Rep. Sum Allowed GM_1 (2.000, 0.0) YES GM_2 (0.000, 0.0) NO GM_3 (0.000, 0.0) NO GM_4 (2.000, 0.0) YES GM_5 (0.000, 0.0) NO GM_6 (2.000, 0.0) YES GM_7 (2.000, 0.0) YES GM_8 (0.000, 0.0) NO
Bilbao
Crystallographic Server http://www.cryst.ehu.es |
For comments, please mail to cryst@wm.lc.ehu.es |